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In operator algebra theory, a conditional expectation is usually assumed to be a projec-
tion map onto a sub-algebra. In the paper, a further type of conditional expectation and
an extension of the Lüders–von Neumann measurement to observables with continuous
spectra are considered; both are defined for a single operator and become a projection
map only if they exist for all operators. Criteria for the existence of the different types of
conditional expectation and of the extension of the Lüders–von Neumann measurement
are presented, and the question whether they coincide is studied. All this is done in
the general framework of Jordan operator algebras. The examples considered include
the type I and type II operator algebras, the standard Hilbert space model of quantum
mechanics, and a no-go result concerning the conditional expectation of observables
that satisfy the canonical commutator relation.

KEY WORDS: conditional expectations; quantum measurement; operator algebras;
Jordan algebras.

1. INTRODUCTION

In operator algebra theory, a conditional expectation is usually assumed to
be an idempotent positive linear map onto a sub-algebra (e.g., see the mono-
graphs by Hanche-Olsen and Størmer, or Sakai, and the early papers in this work
area by Umegaki (1956), Tomiyama (1957), Nakamura and Umegaki (1962)).
The applicability of such conditional expectations to the Lüders–von Neumann
measurement in quantum mechanics has been studied by Areveson (1967). The
intention was to extend the Lüders–von Neumann measurement to observables
with continuous spectra, but the result is negative—at least for the quantum me-
chanical standard model using the algebra of all bounded linear operators on a
separable Hilbert space. In other cases (e.g., the type II1 factors), such an extension
is possible.

A new type of conditional expectation that need not be a map on the whole
operator algebra, but can be defined for each single operator has recently been
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introduced in Niestegge (2005). The present paper studies both types of conditional
expectation as well as an extension of the Lüders–von Neumann measurement to
observables with continuous spectra. Criteria for their existence are presented and
the question when they coincide is investigated. As an example, the canonical
commutator relation [X, Y ] = i in the standard model of quantum mechanics is
considered and it is shown that a conditional expectation of Y under X does not
exist for such an observable pair.

The new type of conditional expectation is based on the concept of quantum
conditional probabilities presented in Niestegge (2001). Since an abelian Jordan
product ◦ (but not the usual operator product) can be reconstructed from these
quantum conditional probabilities (see Niestegge (2004a)), Jordan operator alge-
bras and particularly the so-called JBW algebras [which are the Jordan analogue
of the W ∗-algebras or von Neumann algebras] are the appropriate framework
for this approach. The idempotent elements E of a JBW algebra A then form
the events, the negation of an event E is its orthogonal complement E′ = I − E,
where I is the unit of A, and the states are the positive linear functionals µ with
µ(I) = 1.

With a given state µ, a conditional probability under an event F with µ(F ) > 0
is defined as a state ν with ν(E) = µ(E)/µ(F ) for all those events E with E ≤ F ,
and we then write µ(Y |F ) := ν(Y ) for Y ∈ A. In a JBW algebra, the conditional
probability µ(Y |F ) becomes identical with µ({E, Y,E})/µ(F ), where {X, Y,Z}
is the so-called Jordan triple product defined as {X, Y,Z} = X ◦ (Y ◦ Z) − Y ◦
(Z ◦ X) + Z ◦ (X ◦ Y ) for X, Y,Z ∈ A. When A is the self-adjoint part of a W ∗-
algebra or von Neumann algebra, the Jordan product is X ◦ Y = (XY + YX)/2;
then {X, Y,Z} = (XYZ + ZYX)/2 and {X, Y,X} = XYX.

In the case when {E,F,E} = λE holds for two events E and F with some real
number λ (e.g., if E is a minimal event), we have µ(F |E) = λ for all states µ with
µ(E) > 0. This state-independent conditional probability has been introduced in
Niestegge (2001); it is denoted by P(F |E) and is a very special type of objective
probability.

The monograph by Hanche-Olsen and Størmer (1984) is recommended as
an excellent reference for the theory of Jordan operator algebras. The readers
interested only in the von Neumann algebras or W∗-algebras should keep in mind
that X ◦ Y and {X, Y,X} can be replaced by (XY + YX)/2 and XYX, respectively,
in this case.

After an overview of the different types of conditional expectation in the next
section, the extension of the Lüders–von Neumann measurement to observables
with continuous spectra is introduced in Section 3. Section 4 then presents the main
results dealing with the questions whether the different types of conditional ex-
pectation and the extended Lüders–von Neumann measurement exist and whether
they are identical. The examples and applications considered in Section 5 include
the type I and type II JBW factors, the extension of Areveson’s no-go result to
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the type I JBW factors, and the canonical commutator relation in the quantum
mechanical standard model.

2. CONDITIONAL EXPECTATIONS

Classical conditional probabilities always satisfy the identity µ(F ) =
µ(F |E)µ(E) + µ(F |E′)µ(E′) for any pair of events E and F. However, this does
not hold for the quantum conditional probabilities considered here and motivates
the following definition that has originally been introduced in Niestegge (2004b):
With an event E and any element X in a JBW algebra A and a state µ on A, we
write E →µ X if the equation µ(X) = µ(X|E)µ(E) + µ(X|E′)µ(E′) or, equiva-
lently, µ(EXE) = µ(E ◦ X) holds. With a JBW sub-algebra B of A, we write
B →µ X if E →µ X holds for all events E in B, and we write B →µ A, if if E →µ X

holds for all events E in B and all elements X in A. A state µ satisfying A →µ A
is a finite trace; the generalization of traces to Jordan algebras has been studied in
Pedersen and Størmer (1982).

Lemma 2.1. Let A be a JBW algebra with unit I, and let B be a JBW sub-
algebra with I ∈ B. For any element X ∈ A and any state µ on A, the following
four conditions are equivalent:

(i) B →µ X

(ii) µ(E,X,E′) = 0 for all events E ∈ B.
(iii) µ(S,X, S) = µ(X) for all symmetries S ∈ B (A symmetry is an element

S with S2 = S).
(iv) µ(E,X,F ) = 0 for all orthogonal event pairs E, F ∈ B.

If A and B are the self-adjoint parts of W ∗-algebras, each of the above four
conditions is equivalent to the following one:

(v) µ(UXU−1) = µ(X) for all unitary elements U in the W ∗-algebra gener-
ated by B.

Proof: The equivalence of (i) and (ii) follows from the identity {E,X,E′} =
E ◦ X − {E,X,E}. Each symmetry S ∈ B has the shape E–E′ with an event
E ∈ B. The identity {S,X, S} = X − 4{E,X,E′} then yields the equivalence of
(ii) and (iii). Condition (iv) obviously implies (ii). We now prove (iv) assuming (i).
Let E,F ∈ B be two orthogonal events. Then, µ(E ◦ X) + µ(F ◦ X) = µ((E +
F )◦X) = µ({E + F,X,E + F }) = µ({E,X,E}) + µ({F,X,F }) + 2µ({E,X,

F }) = µ(E ◦ X) + µ(F ◦ X) + 2µ({E,X,F }), and therefore µ({E,X,F }) = 0.
We now assume that A is the self-adjoint part of a W∗-algebra. Condition

(v) implies (iii), since symmetries are a special type of unitary elements
with S−1 = S = S∗. We finally assume (i) and prove (v). Since any unitary
element in the W∗-algebra generated by B can be approximated (in the norm
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topology on A) by unitary elements with discrete spectrum, it is sufficient to
consider U = �λnEn with En being orthogonal events in B such that �En = I

and with λn being complex numbers such that |λn| = 1. Then µ(UXU−1) =
�n�mλnλm

−1µ(EnXEm) = �nµ(EnXEn) = �nµ(En ◦ X) = µ(X), where first
(iv) [which is implied by (i)] and then (i) itself have been used. �

For a normal state µ, the condition B →µ X is equivalent to the existence of
a conditional expectation of X under B in the state µ. This type of conditional
expectation has been introduced in Niestegge (2005): A conditional expectation
of X under B in the state µ is an element Y ∈ B such that µ(EXE) = µ(E ◦ Y )
is satisfied for all events E in B, and the conditional expectation Y is then denoted
by µ(X|B). In general, µ(X|B) is not uniquely determined and there may be
many different versions; µ(X|B) becomes unique if µ is faithful on B (i.e., 0 ≤
X ∈ B and µ(X) = 0 holds only for X = 0). Usually, different normal states yield
different conditional expectations. If the same element Y ∈ B satisfies the equation
µ(EXE) = µ(E ◦ Y ) for all events E in B and for all normal states µ with B →µ X

and if there is at least one such state, Y is denoted by E(X|B) and is called an
objective conditional expectation of X under the sub-algebra B.

Lemma 2.2. LetA be a JBW algebra with unit I, and letB be a JBW sub-algebra
with I ∈ B.

(i) If, for some X ∈ A, the family of those normal states µ that satisfy B →µ X

is faithful on B (i.e., 0 ≤ Y ∈ B with µ(Y ) = 0 for all these states µ

implies that Y = 0), then there is at most one version of the objective
conditional expectation E(X|B).

(ii) If, for some X ∈ A, E(X|B) exists and is unique, then the family of those
normal states µ that satisfy B →µ X is faithful on B.

(iii) If X ∈ A operator-commutes with each Y ∈ B and if E(X|B) exists, then
X must lie in B.

(iv) If the family of those normal states µ on A with B →µ A is faithful on B
and if E(X|B) exists for each X ∈ A, the map X → E(X|B) is normal on
A.

Proof: (i) We assume that both Y1 and Y2 are versions of E(X|B) and that B →µ X

holds. Then µ(E ◦ Y1) = µ(E ◦ Y2) for all events E ∈ B, hence µ(Z ◦ Y1) =
µ(Z ◦ Y2) for all Z ∈ B by the spectral theorem. Selecting Z := Y1 − Y2 yields
µ((Y1 − Y2)2) = 0. Since this holds for all states with B →µ X and since these
states are faithful, we get Y1 = Y2.

(ii) We assume that the states µ with B →µ X are not faithful on B. I.e., there
is a positive element Y ∈ B with Y �= 0 and µ(Y 2) = 0 for all these states µ. For
each such state µ, the Cauchy-Schwarz inequality then implies that µ(E ◦ Y ) = 0
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for all events E ∈ B. Therefore, adding Y to any version of E(X|B), yields another
different version of E(X|B).

(iii) Since X operator-commutes with each Y ∈ B, we have B →µ X for each
state µ on A. With Y := E(X|B), we then get: µ({E,X,E}) = µ(E ◦ Y ) for all
events E ∈ B and all normal states µ on A. Selecting E = I yields: µ(X) = µ(Y )
for all normal states µ. Therefore X = Y ∈ B.

(iv) Let Xα be an increasing net of positive elements in A with supXα = X.
Then the E(Xα|B) are an increasing net as well with E(Xα|B) ≤ E(X|B) for each
α, therefore sup E(Xα|B) ≤ E(X|B) and µ(sup E(Xα|B)) = sup µ(E(Xα|B)) =
sup µ(Xα) = µ(X) = µ(E(X|B)) for all normal states µ with B →µ A. The faith-
fulness then implies that supE(Xα|B) = E(X|B). �

Part (iii) of Lemma 2.2 implies that the objective conditional expectation
E(X|B) does not have any meaning in the case of classical probabilities, where
only the trivial case X ∈ B and E(X|B) = X occurs.

While the conditional expectations µ(X|B) and E(X|B) are defined for each
single element X in A, a conditional expectation in operator algebra theory is
usually assumed to be a positive linear map π from A onto the sub-algebra B
with π (I) = I and π (Y ) = Y for all Y ∈ B. Such maps π shall be called global
conditional expectations in the present paper to distinguish them from the other
cases. They have the following important property: π (Y ◦ X) = Y ◦ π (X) for all
Y ∈ B, X ∈ A. If µ is a faithful normal state with B →µ A, the map X → µ(X|B)
is such a global conditional expectation and, under the assumptions of Lemma 2.2
(iv), the map X → E(X|B) as well.

3. THE LÜDERS–VON NEUMANN MEASUREMENT

For mutually orthogonal events En with �nEn = I and a further event F, the
formula �nµ(F |En)µ(En) = µ(F ) holds for the classical conditional probabilities
µ(F |En) with a probability measure µ(if µ(E) = 0, we lay down the general rule
µ(F |E)µ(E) := 0 although µ(F |E) is not defined in this case), but not for their
quantum analogue with a state µ. In the quantum case, therefore, the state µP ,
defined by µP (F ) := �nµ(F |En)µ(En) for any event F, is not identical with the
original state µ itself.

With the standard quantum-mechanical Hilbert space formalism, we get
µP (F ) = µ(�nEnFEn). This is the state after a Lüders–von Neumann mea-
surement of an observable with discrete spectrum (or of a family of compatible
observables with discrete joint spectrum) and with the eigen-space projections
En, when the physical system was in the initial state µ prior to the measurement.
Von Neumann originally considered only the case when the En are minimal events
(atoms), i.e. only an observable with a non-degenerate spectrum (or a family
of compatible observables with a non-degenerate joint spectrum). This case is
called a complete measurement. Lüders (1951) later extended von Neumann’s
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measurement process to the case of an incomplete measurement, i.e., the En need
no longer be atoms and the spectrum (or joint spectrum) may be degenerate.

The Lüders–von Neumann measurement shall now be extended to observ-
ables with non-discrete spectra; for this purpose, we consider an abelian JBW
sub-algebra B of the JBW algebra A with I ∈ B and try to define µB(F ) as a limit
via µP (F ) = �nµ(F |En)µ(En) with the partitions P := {En} lying in B and be-
coming finer and finer. Since non-countable partitions shall be included, the index
n is replaced by the index α [Non-countable partitions exist on a non-separable
Hilbert space, but µ(Eα) �= 0 then holds only for countably many Eα].

A partition P in B is a family of mutually orthogonal events Eα �= 0 in B with
�αEα = I. A partition P ′ = {Eα′ } is called finer than the partition P (P ′ ≥ P ) if
each Eα is a sum of some of the Eα′ . With this partial ordering ≥, the system P
of all partitions in the abelian sub-algebra B forms a directed set, i.e., for any two
partitions in B there is a third partition in B which is finer than each of the two.

Now let µ be a state on A and let F be any event in A. For each partition
{Eα} = P ∈ P , we define µP (F ) = �αµ(F |Eα)µ(Eα). Now the µP (F ) indexed
by P form a net (or generalized sequence or Moore-Smith sequence) in the unit
interval [0,1]. Due to the compactness of the unit interval, this net has at least
one accumulation point. If it has only one accumulation point, it converges and
we can define µB(F ) := lim µP (F ). This is the generalization to the non-discrete
spectrum that we have been looking for, but it need not exist for all events F in A,
since the net may not converge.

For any partition P ∈ P , we have µP (F ) = µ(�E∈P {E,F,E}). The
�E∈P {E,F,E}, indexed by P ∈ P , form a net in {X ∈ A|0 ≤ X ≤ I}. This
set is compact with regard to the weak topology generated by the normal
linear functionals on A. Therefore, again, it has at least one accumulation
point. If it has only one accumulation point, it converges and we can define
M(F |B) := limP∈P �E∈P {E,F,E}; then µB(F ) exists for the normal states µ on
A and µB(F ) = µ(M(F |B)).

The so defined M provides the generalization of the Lüders–von Neumann
measurement process to observables with non-discrete spectra (let then B be
the sub-algebra generated by the measured observable or family of compatible
observables). We consider M(F |B) not only for events F in A, but also for any
element X inA and define M(X|B) := limP∈P �E∈P {E,X,E} in the case that this
net converges. In contrast to the discrete case, the net need not any more converge
for all X and it shall now be studied for which X it does. In the next section, it
will be seen that there is a close connection to the question when the objective
conditional expectations exist, but first some properties of M will be studied.

Lemma 3.1. Let A be a JBW algebra with unit I, let B be an abelian JBW
sub-algebra with I ∈ B and let B′ be the commutant of B, i.e., B′ contains all
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those elements of A that operator-commute with each element in B.

(i) The net �E∈P {E,X,E}, indexed by P ∈ P , has at least one accumulation
point, and each accumulation point Y lies in the commutantB′ and satisfies
||Y || ≤ ||X||.

(ii) If M(X|B) exists, then M(X|B) ∈ B′ and ||M(X|B)|| ≤ ||X||.
(iii) If M(X|B) exists and Y ∈ B ′, then M(Y ◦ X|B) exists and M(Y ◦ X|B) =

Y ◦ M(X|B).
(iv) If X ∈ B ′, then M(X|B) exists and M(X|B) = X.
(v) If M(X|B) exists, then M(M(X|B)|B) exists and M(M(X|B)|B) =

M(X|B).
(vi) Assume that A is the self-adjoint part of a W∗-algebra and that U is

any unitary element in this W ∗-algebra such that U commutes with B. If
M(X|B) exists, then M(UXU−1|B) exists and M(UXU−1|B) = M(X|B).

Proof: (i) Since ||�E∈P E,X,E|| ≤ ||X|| for each partition P and since the set
Z ∈ A : ||Z|| ≤ ||X|| is weakly compact, the net �E∈P {E,X,E}, indexed by
P ∈ P , has at least one accumulation point in this compact set. We assume
that Y is such an accumulation point. Then there is a subnet Q of P such that
Y = limP∈Q �E∈P {E,X,E}.

For any event D in B, there is a partition Po in Q which is finer than the
partition formed by D and D′. Therefore, for each partition P finer than Po, either
E ≤ D or E ⊥ D holds for E ∈ P , and in both cases D and {E,F,E} operator-
commute. Thus D and Y operator-commute. Since this holds for all events D in
B, we get that Y ∈ B′.

Part (ii) immediately follows from (i). Parts (iii), (iv), and (vi) are direct
consequences of the definition of M, and (v) follows from (ii) and (iv). �

Lemma 3.1 (iv) means that only the trivial case M(X|B) = X occurs in
abelian (i.e., classical) algebras, and (v) means that a repetition of the same
measurement reproduces the result of the first measurement.

4. THE EXISTENCE THEOREMS

The following theorem provides a criterion to decide for which elements X

in A the generalization of the Lüders–von Neumann measurement process and the
objective conditional expectation exist.

Theorem 4.1. Let A be a JBW algebra with unit I, let B be an abelian JBW
sub-algebra with I ∈ B and let B′ be the commutant of B. Then the following two
conditions are equivalent for any element X in A:

(i) The family of those normal states µ on A with B′ →µ X is faithful on B′.
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(ii) E(X|B′) exists and is unique.

If one of these two conditions (i) or (ii) is satisfied, M(X|B) exists and the
identity M(X|B) = E(X|B′) holds.

Proof: By Lemma 3.1, the net �E∈P {E,X,E}, indexed by P ∈ P , has at least one
accumulation point Y , and Y ∈ B′. Let µ be any normal state satisfying B′ →µ X.
For any partition P ∈ P and any event D in B′ we then have:

µ (D ◦ �E∈P {E,X,E}) = µ ((�E∈P D ◦ E) ◦ (�E∈P {E,X,E}))
= µ (�E∈P ((D ◦ E) ◦ {E,X,E}))
= µ (�E∈P ({E,X,D ◦ E}))
= µ (�E∈P ({D ◦ E,X,D ◦ E}

+ {D′ ◦ E,X,D ◦ E}))

= �E∈P µ({D ◦ E,X,D ◦ E})
= �E∈P µ(X ◦ (D ◦ E)) = µ(X ◦ D)

= µ({D,X,D}).
Note that the identity F ◦ {E,X,E} = {E,X,F } holding for events E and F with
F ≤ E has been used here with F = D ◦ E and that Lemma 2.1 (iv) has been
applied.

Therefore, µ(D ◦ Y ) = µ({D,X,D}) for any event D inB′; i.e., Y is a version
of the conditional expectation µ(X|B′) and, since Y does not depend on µ, Y is a
version of E(X|B′). This holds for any accumulation point Y .

We first assume (i). By Lemma 2.2 (i), the faithfulness implies the
uniqueness of E(X|B′) and the coincidence of each accumulation point Y with
E(X|B′). We thus get (ii) as well as the existence of M(X|B) with the identity
M(X|B) = E(X|B′). Condition (ii) implies (i) by Lemma 2.2 (ii). �

While Theorem 4.1 deals with the conditional expectations of single opera-
tors, the following theorem considers the global conditional expectations.

Theorem 4.2. Let A be a JBW algebra with unit I, let B be an abelian JBW
sub-algebra with I ∈ B and let B′ be the commutant of B. Then the following
conditions (i) and (ii) are equivalent; if, moreover, the commutant B′ is abelian,
then all the following four conditions are equivalent:

(i) There is a normal global conditional expectation π : A → B′ with
π (Y ) = Y for Y ∈ B′.

(ii) M(X|B) exists for all X ∈ A and the map X → M(X|B′) is normal on
A.
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(iii) The family of those normal states µ on A with B′ →µ A is faithful on B′.
(iv) E(X|B′) exists and is unique for all X ∈ A. The map X → E(X|B′) is

normal and linear on A.

If (i) or (ii) is satisfied, there is only one unique global conditional expectation π

and the identity π (X) = M(X|B) holds for all X ∈ A. If B′ is abelian and one of
these four conditions is satisfied, the identity E(X|B′) = π (X) = M(X|B) holds
for all X ∈ A.

Proof: We assume (i) and that, for some X ∈ A, Y is an accumulation point
of the net �E∈P {E,X,E}, indexed by P ∈ P , with Q being a subnet of
P such that Y = limP∈Q �E∈P {E,X,E}. Then Y ∈ B′, π (�E∈P {E,X,E}) =
�E∈P π ({E,X,E}) = �E∈P {E,π (X), E} = �E∈P E ◦ π (X) = π (X) for each
partition P ∈ P , and thus Y = π (Y ) = limP∈Q π (�E∈P {E,X,E}) = π (X).
Since each accumulation point Y coincides with π (X), M(X|B) exists and the
identity π (X) = M(X|B) holds. Condition (i) immediately follows from (ii) by
defining π as π (X) := M(X|B) for X ∈ A.

We assume (i) and that B′ is abelian. Therefore π ({F,X,F }) =
{F, π (X), F } = F ◦ π (X) = π (F ◦ X) for X ∈ A and F ∈ B′. Now let ν be any
normal state on A; we then define µ(X) := ν(π (X)) for X ∈ A and thus get an-
other normal state µ with µ({F,X,F }) = µ(F ◦ X) for X ∈ A and F ∈ B′. I.e.,
B′ →µ A holds, and µ coincides with ν on the sub-algebra B′. Since the set of all
normal states on A is faithful on B′, we get (iii). Condition (iii) implies (iv) by
Theorem 4.1 and Lemma 2.2 (iv). Condition (i) immediately follows from (iv) by
defining π as π (X) := E(X|B′) for X ∈ A. �

One of the examples considered in the next section will show that, without
the commutant B′ being abelian, the first two conditions of Theorem 4.2 do not
imply the last two ones.

5. EXAMPLES AND APPLICATIONS

Objective conditional probabilities for continuous spectra. Let Y be
an observable with real values. If its spectrum is discrete and non-degenerate,
Y = �λnFn where the λn are the eigen-values and the Fn are atoms, and P(E|Fn)
can be interpreted as P(E|Y = λn) for some event E, i.e., as the state-independent
objective conditional probability of E after a measurement of Y has given the
result λn. The question is whether this can be extended to a non-degenerate, but
continuous spectrum. Can P(E|Y = y) be defined then in a reasonable way for y
belonging to the spectrum?

A similar procedure for the conditional expectations µ(E|B) in mathemati-
cal probability theory suggests to do this by factorizing E(E|B) or M(E|B) as
E(E|B) = f (Y ) or M(E|B) = f (Y ) with a measurable function f and to define
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P(E|Y = y) := f (y) then, where B denotes the JBW sub-algebra generated by
Y. The non-degenerate spectrum means that B is a maximal abelian sub-algebra
(i.e., B = B′); from Theorem 4.2 we know that we need not bother whether to
use E(E|B) or M(E|B), since either none exists or both exist and coincide.
The factorization is possible when B = {f (Y ) : f is a measurable function};
this holds if Y is of countable type (i.e., each partition that consists of non-zero
spectral projections of X is countable), which is always the case in the quantum
mechanical standard model with a separable Hilbert space. Thus, it is possible to
define P(E|Y = y) for a non-degenerate continuous spectrum in certain cases,
while P (E|Y = λn) always exits in the case of a non-degenerate discrete spectrum.

Algebras with faithful traces. A trace on a usual operator algebra has the
well-known properties tr(X) ≥ 0 for X ≥ 0, tr(X) = tr(UXU−1) for the unitary
operators U and tr(XY ) = tr(YX) for all X, Y . A trace on a JBW algebra A
has the properties tr(X) ≥ 0 for X ≥ 0, tr(X) = tr(SXS) for the symmetries S
in A, tr(X ◦ (Y ◦ Z) = tr((X ◦ Y ) ◦ Z), tr(X ◦ {Z, Y,Z}) = tr({Z,X,Z} ◦ Y ),
and tr(X ◦ Y ) ≥ 0 for X ≥ 0, Y ≥ 0 (X, Y,Z ∈ A).

LetA be a JBW algebra with a faithful normal trace. LetB be an abelian JBW
sub-algebra containing a partition Eα such that each Eα has a finite trace. Then,
µα(X) := tr(Eα ◦ X)/tr(Eα) for X ∈ A defines a faithful family of normal states
satisfying B′ →µ A for µ = µα and each α. By Theorem 4.1, M(X|B) and E(X|B′)
then exist for all X ∈ A. By Lemma 2.2, the map X → M(X|B) = E(X|B′) is
normal on A.

This situation covers the type I and type II JBW factors; in a type III
factor, finite trace partitions do not exist. If the trace on A is finite (e.g., A
is a type In or II1 factor), the trivial partition {I} is a finite trace partition
such that M(X|B) and E(X|B′) exist for all X ∈ A and for any abelian JBW
sub-algebra B. In the type II1 case, P(E|Y = y) exists for all events E and for each
observable Y that has a non-degenerate continuous spectrum and is of countable
type. This case and the other type II cases where B does not contain events that
are minimal inB are not covered by the usual Lüders–von Neumann measurement.

Type I factors. The standard model of quantum mechanics uses the algebra of
all self-adjoint bounded linear operators on the separable Hilbert space with infinite
dimension and includes observables with non-degenerate continuous spectra. An
important question is whether the usual Lüders–von Neumann measurement can be
extended to such observables. However, Theorem 4.2 and part (ii) of the following
lemma show that no normal global conditional expectation onto the sub-algebra
generated by such an observable exists; note that a non-degenerate spectrum means
that this sub-algebra is maximal abelian. Such a no-go result has originally been
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proved by Areveson (1967) for the standard model of quantum mechanics. In the
framework of the present paper, we get it for all type I JBW factors.

Lemma 5.1. LetA be type I JBW factor (or any direct sum of type I JBW factors)
and let B be a sub-algebra with I ∈ B.

(i) Let tr denote the standard trace function on A (sum of the standard trace
functions on each factor summand). The state µ with the shape µ(X) =
tr(ρ ◦ X) for X ∈ Awith some positive ρ ∈ A, tr(ρ) = 1, satisfiesB →µ A
if and only if ρ ∈ B′.

(ii) Let B be a maximal abelian sub-algebra (i.e., B = B′). Then the family of
those normal states µ on A with B →µ A is faithful on B if and only if B
is generated by atoms (minimal in A).

Proof: (i) If ρ ∈ B′, then tr(ρ ◦ {E,X,E}) = tr({E, ρ,E} ◦ X) = tr((E ◦ ρ) ◦
X) = tr(E ◦ (ρ ◦ X)) for X ∈ A and events E ∈ B. We now assume that µ(X) =
tr(ρ ◦ X) for X ∈ A with some positive ρ ∈ A, tr(ρ) = 1, and that B →µ A holds.
Since tr({S, ρ, S} ◦ X) = tr(ρ ◦ {S,X, S}) = tr(ρ ◦ X) holds for all X ∈ A by
Lemma 2.1, it follows that {S, ρ, S} = ρ for each symmetry S in B. Hence ρ ∈ B′.

(ii) We first assume that the family of those normal states µ on A with B →µ A
is faithful onB. Let E �= 0 be any event inB. There is a state ν onAwithB →ν A and
ν(E) > 0, and we define µ(X) := ν({E,X,E})/ν(E) for X ∈ A. Then µ(E) = 1
and B →µ A holds since B is abelian and contains E (e.g., use Lemma 2.1 (iv)).
The state µ has the shape µ(X) = tr(ρ ◦ X) for X ∈ A with some positive ρ ∈ A,
and from (i) we get that ρ ∈ B′ = B. Then ρ has at least one non-zero eigenvalue;
the spectral projection D1 of ρ belonging to this eigenvalue also lies in B and has
a finite trace because tr(ρ) = 1. Thus tr(D1) ∈ {1, 2, . . .}. Either D1 is already a
minimal projection in B, or there is D2 in B with D2 ≤ D1 and tr(D2) < tr(D1).
If D2 is not minimal in B, this process can be continued, but after n = tr(D)
steps at latest, a minimal projection D in B is found. Then D is also minimal
in A, since any event below D commutes with B and thus belongs to B. Since
1 = µ(E) = tr(ρE), we have D ≤ E.

Let now Dα be a maximal family of orthogonal atoms in B (which exists by
Zorn’s Lemma). If I − �Dα �= 0, there is an atom below I − �Dα , contradicting
the maximality of the family Dα . Therefore I = �Dα , and the Dα generate B.

We now assume that B is generated by atoms, and for each atom E we define
a state µE via µE(X) := tr(E ◦ X) for X ∈ A. The family of these states is then
faithful on B and each µ = µE satisfies B →µ A. �

The canonical commutator relation. The standard model of quantum me-
chanics includes observables X and Y both having an unbounded non-degenerate
continuous spectrum and satisfying the commutator relation [X, Y ] = i. Let B be
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the weakly closed sub-algebra generated by X. Note that then B = B′. It follows
from the result above that neither a normal global conditional expectation π onto
B nor M(Z|B) nor E(Z|B) exist for all Z ∈ A. We shall now study the question
whether normal states µ exist that satisfy B →µ E and whether M(E|B) or E(E|B)
exist if the event E is one of the spectral projections of Y .

For each Borel set B in the real numbers let EB denote the corresponding
spectral projection of Y. Moreover define Us := exp(isX); Us is a unitary element
in B for each real number s with UsEBU−1

s = EB−s . If now a normal state µ sat-
isfies B →µ EB , then Lemma 2.1 implies that µ(EB) = µ(UsEBU−1

s ) = µ(EB−s)
holds for all real numbers s and all Borel sets B. This means that the distribu-
tion of Y in the state µ is invariant under translations and therefore becomes a
multiple of the Lebesgue measure. The Lebesgue measure cannot be normalized,
which contradicts the fact that the distribution of Y in the state µ is a probability
distribution.

Particularly for the spectral projection EI belonging to the unit in-
terval I =]0, 1] we get nµ(EI ) = �k=1,...,nµ(EI−k) = µ(E]−n,0]) ≤ 1 for all
n, hence µ(EI ) = 0 = µ(EI−k) for all k and finally the contradiction 1 =
�−∞<k<∞µ(EI−k) = 0. Therefore, no normal state µ exists satisfying B →µ EI .
The objective conditional expectation E(EI |B) is not defined then.

We shall now show that M(EI |B) does not exist either. If M(EI |B) ex-
ists, then M(UsEIU

−1
s |B) exists as well and, by Lemma 3.1, M(EI |B) =

M(UsEIU
−1
s |B) = M(EI−s |B) for any real number s. Furthermore, nM(EI |B) =

�k=1,...,nM(EI−k|B) = M(E]−n,0]|B) ≤ I for all n. Since 0 ≤ M(EI |B), this im-
plies that M(EI |B) = 0, and we finally get the contradiction I = M(I|B) =
�−∞<k<∞M(EI−k|B) = �−∞<k<∞M(EI |B) = 0, assuming σ -additivity.

The standard model of quantum mechanics and the observables X and Y as
above can also be used to construct an example where M(Z|B) exists for all Z ∈ A
and is a normal global conditional expectation onto B′, while there is no normal
state µ with B′ →µ A. We use the same spectral projection EI of Y as above and
define B := REI ⊕ RE′

I . Then B′ = EIAEI ⊕ E′
IAE′

I and, by von Neumann’s
bicommutant theorem, B′′ = B. Moreover, M(Z|B) = EIZEI + E′

IZE′
I for

all Z ∈ A, which is a normal global conditional expectation. However, since
tr(EI ) = ∞ = tr(E′

I ), B′′ = B does not contain any ρ with tr(ρ) = 1 and, by
Lemma 5.1 (i), there is no normal state µ with B′ →µ A.

Tensor products. Since a reasonable tensor product for general JBW algebras
is not defined, we consider JBW algebras that are the self-adjoint part of W ∗-
algebras. Let M and N be W ∗-algebras, A the self-adjoint part of M ⊗ N , B the
natural embedding of the self-adjoint part of M in A and X the natural embedding
of some self-adjoint element of N in A. Then X operator-commutes with B such
that E(X|B) does not exist by Lemma 2.2 (iii) [unless X = λI for some real
number λ].
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The conditional expectation µ(X|B) exists for each normal state µ on A. If
µ is a faithful normal trace state, µ(Y |B) exists for each Y ∈ A, π (Y ) := µ(Y |B)
defines a normal global conditional expectation, and many other such global
conditional expectations ν(Y |B) are obtained by using the states ν(Y ) := µ(Z ◦ Y )
with Z ∈ B′. Note that B′ contains the self-adjoint part of N . If M is abelian,
M(Y |B) exists and M(Y |B) = Y for all Y ∈ A, thus coinciding with E(Y |B′)
since B′ = A. This means that, without the commutant B′ being abelian, the
conditions (i) or (ii) cannot imply the conditions (iii) or (iv) in Theorem 4.2.
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